
Building Mobile Applications Using BIRT APIs

Information in this document is subject to change without notice. Examples provided are fictitious. No part of this
document may be reproduced or transmitted in any form, or by any means, electronic or mechanical, for any purpose,
in whole or in part, without the express written permission of Actuate Corporation.

© 1995 - 2015 by Actuate Corporation. All rights reserved. Printed in the United States of America.

Contains information proprietary to:
Actuate Corporation, 951 Mariners Island Boulevard, San Mateo, CA 94404

www.opentext.com
www.actuate.com

The software described in this manual is provided by Actuate Corporation under an Actuate License agreement.
The software may be used only in accordance with the terms of the agreement. Actuate software products are
protected by U.S. and International patents and patents pending. For a current list of patents, please see
http://www.actuate.com/patents.

Actuate Corporation trademarks and registered trademarks include:
Actuate, ActuateOne, the Actuate logo, Archived Data Analytics, BIRT, BIRT 360, BIRT Analytics, The BIRT Company,
BIRT Content Services, BIRT Data Analyzer, BIRT for Statements, BIRT iHub, BIRT Metrics Management, BIRT
Performance Analytics, Collaborative Reporting Architecture, e.Analysis, e.Report, e.Reporting, e.Spreadsheet,
Encyclopedia, Interactive Viewing, OnPerformance, The people behind BIRT, Performancesoft, Performancesoft Track,
Performancesoft Views, Report Encyclopedia, Reportlet, X2BIRT, and XML reports.

Actuate products may contain third-party products or technologies. Third-party trademarks or registered trademarks
of their respective owners, companies, or organizations include:
Mark Adler and Jean-loup Gailly (www.zlib.net): zLib. Adobe Systems Incorporated: Flash Player, Source Sans Pro font.
Amazon Web Services, Incorporated: Amazon Web Services SDK. Apache Software Foundation (www.apache.org):
Ant, Axis, Axis2, Batik, Batik SVG library, Commons Command Line Interface (CLI), Commons Codec, Commons
Lang, Commons Math, Crimson, Derby, Hive driver for Hadoop, Kafka, log4j, Pluto, POI ooxml and ooxml-schema,
Portlet, Shindig, Struts, Thrift, Tomcat, Velocity, Xalan, Xerces, Xerces2 Java Parser, Xerces-C++ XML Parser, and XML
Beans. Daniel Bruce (www.entypo.com): Entypo Pictogram Suite. Castor (www.castor.org), ExoLab Project
(www.exolab.org), and Intalio, Inc. (www.intalio.org): Castor. Alessandro Colantonio: CONCISE Bitmap Library.
d3-cloud. Day Management AG: Content Repository for Java. Dygraphs Gallery. Eclipse Foundation, Inc.
(www.eclipse.org): Babel, Data Tools Platform (DTP) ODA, Eclipse SDK, Graphics Editor Framework (GEF), Eclipse
Modeling Framework (EMF), Jetty, and Eclipse Web Tools Platform (WTP). Bits Per Second, Ltd. and Graphics Server
Technologies, L.P.: Graphics Server. Dave Gandy: Font Awesome. Gargoyle Software Inc.: HtmlUnit. GNU Project:
GNU Regular Expression. Google Charts. Groovy project (groovy.codehaus.org): Groovy. Guava Libraries: Google
Guava. HighSlide: HighCharts. headjs.com: head.js. Hector Project: Cassandra Thrift, Hector. Jason Hsueth and Kenton
Varda (code.google.com): Protocole Buffer. H2 Database: H2 database. IDAutomation.com, Inc.: IDAutomation.
IDRsolutions Ltd.: JPedal JBIG2. InfoSoft Global (P) Ltd.: FusionCharts, FusionMaps, FusionWidgets, PowerCharts.
InfoVis Toolkit. Matt Inger (sourceforge.net): Ant-Contrib. Matt Ingenthron, Eric D. Lambert, and Dustin Sallings
(code.google.com): Spymemcached. International Components for Unicode (ICU): ICU library. JCraft, Inc.: JSch. jQuery:
jQuery, JQuery Sparklines. Yuri Kanivets (code.google.com): Android Wheel gadget. LEAD Technologies, Inc.:
LEADTOOLS. The Legion of the Bouncy Castle: Bouncy Castle Crypto APIs. Bruno Lowagie and Paulo Soares: iText.
Membrane SOA Model. MetaStuff: dom4j. Microsoft Corporation (Microsoft Developer Network):
CompoundDocument Library. Mozilla: Mozilla XML Parser. MySQL Americas, Inc.: MySQL Connector/J. Netscape
Communications Corporation, Inc.: Rhino. NodeJS. nullsoft project: Nullsoft Scriptable Install System. OOPS
Consultancy: XMLTask. OpenSSL Project: OpenSSL. Oracle Corporation: Berkeley DB, Java Advanced Imaging, JAXB,
Java SE Development Kit (JDK), Jstl, Oracle JDBC driver. PostgreSQL Global Development Group: pgAdmin,
PostgreSQL, PostgreSQL JDBC driver. Progress Software Corporation: DataDirect Connect XE for JDBC Salesforce,
DataDirect JDBC, DataDirect ODBC. Quality Open Software: Simple Logging Facade for Java (SLF4J), SLF4J API and
NOP. Raphael. RequireJS. Rogue Wave Software, Inc.: Rogue Wave Library SourcePro Core, tools.h++. Sencha Inc.:
Extjs, Sencha Touch. Shibboleth Consortium: OpenSAML, Shibboleth Identity Provider. Matteo Spinelli: iscroll. StAX
Project (stax.codehaus.org): Streaming API for XML (StAX). Sam Stephenson (prototype.conio.net): prototype.js.
SWFObject Project (code.google.com): SWFObject. ThimbleWare, Inc.: JMemcached. Twittr: Twitter Bootstrap. VMWare:
Hyperic SIGAR. Woodstox Project (woodstox.codehaus.org): Woodstox Fast XML processor (wstx-asl). World Wide
Web Consortium (W3C) (MIT, ERCIM, Keio): Flute, JTidy, Simple API for CSS. XFree86 Project, Inc.: (www.xfree86.org):
xvfb. ZXing Project (code.google.com): ZXing.

All other brand or product names are trademarks or registered trademarks of their respective owners, companies, or
organizations.

Document No. 141215-2-431301 June 23, 2015

i

Contents
About Building Mobile Applications Using BIRT APIs iv

Chapter 1
Introducing BIRT APIs for applications . 2
Using BIRT REST API and JavaScript API in applications . 3
About mobile applications . 4
About mobile application development . 4
Introducing the BIRT Gazetteer example application . 5
Accessing source code and resources . 10
About Xcode project files . 13
About resources used by the example application . 15

Chapter 2
Understanding BIRT and mobile tools . 18
Overview of BIRT iHub Visualization Platform . 19
Considering which Actuate API to use . 19

About the representational state transfer API . 20
About the JavaScript API . 20
About the Information Delivery API . 21

Using BIRT Designer Professional for mobile results . 22
IBuilding the mobile application source code . 23
Introducing GitHub . 23

Chapter 3
Integrating REST API . 26
Reviewing REST API integration . 27
Authenticating with REST API . 28
Displaying a list with REST API . 30
Displaying data visualizations with REST API . 31

Chapter 4
Integrating JavaScript API . 36
Reviewing JSAPI integration . 37
Updating JavaScript in a web view . 37
Displaying BIRT designs in a web view . 39

Chapter 5
Extending mobile functionality . 42
Optimizing BIRT content for mobile viewing . 43
Accessing mobile device features and applications . 43

ii

Using external authentication .44
Changing application default values .44
Customizing web view options .44
Additional optimizations .45

Chapter 6
Using developer resources . 48
Using Actuate documentation .49
Visiting the Actuate developer site .51
Using the developer site for the mobile platform .52
About additional REST API resources .52

Index . 53

A b o u t B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s iii

A b o u t B u i l d i n g M o b i l e
A p p l i c a t i o n s U s i n g

B I R T A P I s

Building Mobile Applications Using BIRT APIs provides information about using
the Actuate REST API in software applications for mobile devices. The sections in
this guide are:

■ About Building Mobile Applications Using BIRT APIs. This chapter provides an
overview of this guide.

■ Chapter 1. Introducing BIRT APIs for applications. This chapter introduces the
different types of mobile applications and introduces the BIRT Gazetteer
application for iOS devices.

■ Chapter 2. Understanding BIRT and mobile tools. This chapter introduces the
tools used to build the BIRT Gazetteer sample application.

■ Chapter 3. Integrating REST API. This chapter discusses methods to integrate
the REST API in an application.

■ Chapter 4. Integrating JavaScript API. This chapter discusses methods to
integrate the JavaScript API in an application.

■ Chapter 5. Extending mobile functionality. This chapter discusses possible
customization of the BIRT Gazetteer application.

■ Chapter 6. Using developer resources. This chapter lists resources to learn more
about REST API.

iv B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

C h a p t e r 1 , I n t r o d u c i n g B I R T A P I s f o r a p p l i c a t i o n s 1

C h a p t e r

1
Chapter 1Introducing BIRT APIs

for applications
This chapter contains the following topics:

■ Using BIRT REST API and JavaScript API in applications

■ Introducing the BIRT Gazetteer example application

■ Accessing source code and resources

■ About Xcode project files

■ About resources used by the example application

2 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Using BIRT REST API and JavaScript API in
applications

This chapter discusses how to incorporate BIRT data objects and reports into your
mobile application. The BIRT iHub supports application development using the
REST API and JavaScript API (JSAPI). You can use one or both of these APIs to
integrate BIRT visualizations and access data files stored in BIRT iHub servers.

The REST API supports:

■ Authenticating users

■ Searching for BIRT files

■ Running jobs from BIRT designs with selected parameters and locales

■ Downloading files

■ Downloading reports in PDF and Excel formats

■ Downloading and filtering data in JSON or CSV format

The JSAPI supports:

■ Embedding interactive BIRT visualizations in web pages

■ Handling scripted events within BIRT reports or BIRT report elements

■ Accessing table of contents and parameters in BIRT reports

■ Operating the BIRT Interactive Viewer and Crosstabs

The BIRT files contain your data and report templates. Use these APIs to access
and generate BIRT content, enabling your application to display secure,
interactive data visualizations in any programming language that supports REST
and JavaScript.

Introducing the BIRT Gazetteer example application
This example illustrates how to integrate BIRT iHub resources into a native
mobile application using iOS Objective-C. Two BIRT APIs—the REST API and the
JavaScript API (JSAPI)—retrieve data and visualizations from a demonstration
BIRT iHub 3.1 server. The iHub server resources used by this example are
included with the source code.

This example application demonstrates the following functionality:

■ User authentication to a user account residing on a BIRT iHub server

■ Requesting and setting values of parameters in BIRT reports

C h a p t e r 1 , I n t r o d u c i n g B I R T A P I s f o r a p p l i c a t i o n s 3

■ Building the following interactive content:

■ Hierarchical list of parameter values

■ Global map containing location data and links to additional reports

■ Extracting data for display as text

■ Extracting data for display in third-party visualizations

■ Sending values to an Objective-C UIWebView

■ Displaying a report item from a BIRT design file in an Objective-C UIWebView

■ Displaying a full BIRT report in an Objective-C UIWebView

■ Display the appropriate report design for current device orientation

After using REST API to extract location names from a BIRT file, this application
builds touch-enabled navigation links. When a user selects a link, Objective-C
code passes the information to the embedded web view for display using JSAPI.
The appropriate BIRT content is displayed for the current device orientation,
portrait or landscape.

Figure 1-1 shows the application’s list interface.

Figure 1-1 User interface displaying a list, chart, and link to BIRT reports

View details
report

Carousel of
charts using
extracted
data

Location
label

4 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

An application can extract data from iHub using the REST API and send the
values to third-party data visualizations, such as a chart or map. BIRT
visualizations, such as a chart, table or a full page BIRT report display in
interactive web views using JSAPI.

This example enables the JavaScript visualization to act as a tool to select a BIRT
report for display. As a result, both the reports and third-party JavaScript
visualizations use the same web view. When a full page BIRT report is displayed,
the other JavaScript content is hidden using CSS.

Figure 1-2 contains the following HTML DIV elements:

■ Mapdiv, which displays the JavaScript map

■ Sidebar, which displays a BIRT bookmark

■ Report, which displays a selected BIRT report

Figure 1-2 Map and BIRT bookmark in web view

This web view also contains an image button that runs the loadReport JavaScript
function. This function displays a report in the report DIV and hides the container
div element that contains the JavaScript map and BIRT bookmark.

Mapdiv
holding
HTML map

Link to
display
report DIV

Navigation
bar

Sidebar
DIV holding
BIRT
bookmark

C h a p t e r 1 , I n t r o d u c i n g B I R T A P I s f o r a p p l i c a t i o n s 5

Accessing source code and resources
The source code and BIRT resources to build the example iOS Objective-C
application are available from the Actuate GitHub web site at the following URL:

https://github.com/ActuateBIRT/GazetteerExample

BIRT Gazetteer uses the following third-party chart libraries:

■ HTTPS://github.com/AlexandrGraschenkov/MagicPie

■ HTTPS://github.com/zhuhuihuihui/Echart

■ HTTPS://www.amcharts.com

If you want to distribute or use any of these libraries, check the library’s web site
for licensing information.

About Xcode project files
The following is a general overview of the BIRT Gazetteer source code:

■ Framework files to display a menu and table view of the application in iPad

■ BIRTAppDelegate
Manages basic application tasks occurring during start-up and shutdown

■ BIRTConstants
Contains default values for iHub URLs and volume paths

■ BIRTDetailViewController
Contains the overview charts displayed in a split view pane

■ BIRTLoginViewController
Contains the application login page

■ BIRTMapViewController
Manages the MapView page and the content displayed in a web view

■ BIRTMasterViewController
Contains the location list, displayed in a split view pane

■ BIRTPopupViewController
Opens the pop-up menu for aboutUs/sourceData/logOut

■ BIRTSelectionProtocol.h
Defines user authentication and user selections in the application

6 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

■ BIRTSourceDataViewController
Contains Source Data page font color and other confirmations

■ BIRTSplitViewController
Contains the split view page that displays the location list in one pane and
overview charts in another pane

■ Files to manage the slider and page control of the three overview charts

■ BIRTPagerView

■ BIRTUISlider

■ Files to handle the About us page

■ BIRTExtUrlViewController

■ BIRTAboutUsViewController

■ Main.storyboard file to show and handle application interactive work flow

■ Images.xcassets containing the application icon and launch image files

■ /mapView folder containing the HTML and JavaScript files to display a map

■ /jsapi folder for jsapi.html, an HTML file containing Actuate JSAPI code

■ /ReportView folder containing an iOS UIWebView and controller file
These files display BIRT reports using the jsapi.html.

■ /Chart folder containing third-party charts

■ BIRTChartData file to manage REST API data for front page charts

■ /BarChart folder containing a UIWebView that loads a line chart from a
BIRT report using JSAPI

■ /ColumnChart folder containing the EChart library folder and other files
to support the column chart

■ /PieChart folder containing the MagicPie library folder and other files to
support the pie chart

■ /Resources folder containing fonts and images used in the application

■ /Font folder

■ /Images folder

■ /Supporting Files folder containing general iOS application files

■ Gazetteer-Info.plist

■ InfoPlist.strings

■ Main.m

■ Gazetteer-Prefix.pch

C h a p t e r 1 , I n t r o d u c i n g B I R T A P I s f o r a p p l i c a t i o n s 7

About resources used by the example application
The example, BIRT Gazetteer, uses the REST API to retrieve data from a BIRT data
store installed in the iHub server. These resource files are included with the BIRT
Gazetteer source code, stored on the Actuate GitHub site. Choose Download Zip
on the GitHub web page to download these resources to your computer.

If you are using your own iHub server, install the world.data file in the
\Resources\Data Objects folder of the iHub volume.

Report designs for the application are stored in the administrator’s home folder
in the volume. Install the following files into the \Home\administrator folder of
the iHub volume:

■ Continent Report Portrait.rptdesign

■ Continent Report.rptdesign

■ Country Report Portrait.rptdesign

■ Country Report.rptdesign

■ GDP per capita.rptdesign

■ Map View Content.rptdesign

■ Regional Report Portrait.rptdesign

■ Regional Report.rptdesign

■ World Report Portrait.rptdesign

■ World Report.rptdesign

Each report design except the World Report uses parameters to filter data
displayed in the report. These reports are then shown in a web view, similar to a
web browser, when a user selects the Details button on the application.

The GDP per capita.rptdesign file includes bookmarked charts that are
embedded in the chart carousel.

The Map View Content.rptdesign includes bookmarked tables of text values
displayed next to the map view.

There is a BIRT design file for a portrait layout and landscape layout. Changing
the orientation of the mobile device loads the appropriate design file.

8 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

C h a p t e r 2 , U n d e r s t a n d i n g B I R T a n d m o b i l e t o o l s 17

C h a p t e r

2
Chapter 2Understanding BIRT

and mobile tools
This chapter contains the following topics:

■ Overview of BIRT iHub Visualization Platform

■ Considering which Actuate API to use

■ Using BIRT Designer Professional for mobile results

■ Introducing GitHub

18 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Overview of BIRT iHub Visualization Platform
BIRT iHub Visualization Platform is a browser-based solution for document
delivery, data analysis and building reports. Visualization Platform enables users
to securely access data in the following ways:

■ View and share interactive reports and dashboards.

■ Analyze data in cross tabs and tables.

■ Extract data from caches and stores of data.

Visualization Platform includes a user administration console that enables
administrators to manage user profiles, user groups, as well as authorizing user
and group access to published files. A volume administration console enables
administrators to manage volume level operations such as assigning volume
license options, managing files, scheduling file creation jobs, and archiving files.

This product is a set of dynamic web pages that installs automatically when you
install BIRT iHub. Alternatively, you can install BIRT iHub Visualization Platform
as a stand-alone product.

Considering which Actuate API to use
Actuate provides software development tools as a collection of APIs that support
designing new Actuate applications or extending or customizing existing
applications. Each API offers the developer different methods to access and
control data, visualizations and iHub server functionality. The API that you use
depends on what you need to do.

Actuate APIs libraries extend functionality in applications that provide API
integration points. Actuate provides:

■ Representational state transfer API (REST API). The REST API accesses and
manages data and files built with Actuate BIRT technology. Use this API to
manage and generate new documents, and to request data in the JSON format.

■ JavaScript API (JSAPI). The JSAPI provides libraries for web and client-side
visualizations using the JavaScript programming language. Use this API to
render BIRT content in a web page.

About the representational state transfer API
The Actuate REST API is an HTTP service that runs on a Node.js platform. This
service interacts with BIRT content and files on an iHub server using URI
requests such as:

http://<web server>:5000/ihub/v1/login

C h a p t e r 2 , U n d e r s t a n d i n g B I R T a n d m o b i l e t o o l s 19

This API is installed with iHub and responds to RESTful web requests that uses
HTTP methods such as GET, PUT, and DELETE. The REST API is a strategy for
developing web and mobile components that are platform and language
independent, require very little time to implement, and that use minimal client
and server resources.

RESTful requests use a specific command set to access REST API resources, which
simplifies implementations by providing access to essential functions and raw
data. Actuate offers many APIs that provide broader functionality but they are
implemented using specific tools or access resources in a wide array of formats
and interfaces. The REST API provides maximum freedom for developers to
create their own implementations.

The REST API employs uniform resource identifiers (URIs) references to convey
user requests to the iHub system. URIs access iHub functionality, including
generating and storing reports, browsing volume contents, extracting data from
files and data sources, and managing users and credentials.

Mobile applications request RESTful content by sending URI requests to the
REST service. The REST server module interprets REST requests and forwards
them as SOAP requests to iHub. For example, iOS applications can use
NSURLConnection object to request RESTful content, Android applications can
use the ApacheHTTPClient for Java, and JavaScript can use XMLHttpRequest or
the jQuery AJAX library.

To view interactive visualizations such as filtering, drill down, and dashboards,
use the Actuate JSAPI. For more information about using the REST API, see
Integrating Applications into BIRT iHub.

About the JavaScript API
The Actuate JavaScript API enables the creation of custom web pages that display
Actuate BIRT report elements. The Actuate JSAPI handles connections, security,
and interactive content. The Actuate JSAPI classes embed BIRT reports or BIRT
report elements into web pages, handle scripted events within BIRT content,
package report data for use in web applications, and operate BIRT Interactive
Viewer and Crosstabs.

The Actuate JavaScript API uses the Prototype JavaScript Framework. The
following URI to an iHub server contains the Actuate JavaScript API library:

http://<web server>:8700/iportal/jsapi

The base class in the Actuate JavaScript API is actuate. The Actuate class is the
entry point for all of the Actuate JavaScript API classes and establishes
connections to the Actuate web application services. The Actuate JavaScript API
uses HTTP requests to retrieve reports and report data from an Actuate web
service. The subclasses provide functionality that determines the usage of the
reports and report data.

20 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Many functions in the Actuate JavaScript API use a callback function. A callback
function is a custom function written into the web page that is called immediately
after the function that calls it is finished. A callback function does not execute
before the required data or connection has been retrieved from the server.

Mobile applications integrate BIRT visualizations using JSAPI in a web view. A
web view is a class or object that displays an HTML content such as a web page
within a native application. The iHub server receives the JSAPI requests and
sends HTML content for display in a selected HTML DIV element. For example,
iOS applications can use UIWebView object to display JSAPI, Android
applications can use the WebView class and JSAPI can display in HTML files
using most web browsers.

For more information about using the JSAPI, see Integrating Applications into
BIRT iHub.

Using BIRT Designer Professional for mobile results
Actuate BIRT Designer Professional is a report designer for report developers
who want to use the functionality provided by Actuate Corporation that
enhances the Eclipse BIRT Report Designer.

You can use BIRT Designer Professional to designing the following content:

■ BIRT visualizations that securely display data charts, cross tabs, maps, and
tables

■ Templates to export HTML, PDF, and Microsoft Excel file formats

■ Structured data from databases, web services, XML files, and other data
sources

■ Custom data and visualization solutions using expressions and scripting

BIRT designs files query data sources and display charts, tables, cross tabs and
maps interactively on web pages using the Actuate JSAPI. These designs can also
be run and downloaded in formats such as Adobe PDF and Microsoft Excel using
the Actuate REST API.

BIRT data object files can query multiple data sources and cache the data in data
sets, data models, and data cubes for analysis and visual display in charts and
maps. You can filter and retrieve data sets from a data object in the JSON format
using REST API. You can also use data objects to provide data to BIRT designs
and dashboards.

You can use the REST API to extract aggregated data when that data is grouped in
BIRT report items. Each item in a BIRT report such as a chart, cross tab, and table
can include a bookmark name to identify the item. The REST API uses the
bookmark value to find the report item and then to extract the data displayed in
the report item. For example, a bookmark named MapState can identify a cross

C h a p t e r 2 , U n d e r s t a n d i n g B I R T a n d m o b i l e t o o l s 21

tab that summarizes population statistics about each state in a BIRT design file.
You can use the REST API to find the bookmark name and extract the data
summary in the JSON format for use in your application.

For more information about using BIRT Designer Professional, see Actuate BIRT
Application Developer Guide.

Introducing GitHub
GitHub is a web site that stores source code repositories for many public and
private projects. The source code for BIRT Gazetteer is available at GitHub. You
do not need an account with GitHub to download the source code for the BIRT
Gazetteer, but you must have a user account to use the GitHub issue tracker or to
submit comments or changes about the source code.

For more information about GitHub, visit the following URL:

https://github.com/

22 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

C h a p t e r 3 , I n t e g r a t i n g R E S T A P I 25

C h a p t e r

3
Chapter 3Integrating REST API

This chapter contains the following topics:

■ Reviewing REST API integration

■ Authenticating with REST API

■ Displaying a list with REST API

■ Displaying data visualizations with REST API

26 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Reviewing REST API integration
The BIRT iHub server offers many RESTful URI endpoints to access stored
resources on the server. This example uses Objective-C to make the following
REST API requests:

■ Authenticate the user to receive an authentication ID to attach to other
REST API requests.

■ Download a list of locations values that are used to build BIRT reports.

■ Download data sets in JSON format for display in third-party visualizations.

Using Objective-C for iOS, a RESTful URI request to a resource is built using the
NSString class. NSURLConnection sends the NSString to the iHub server.

An NSDictionary object is created from the iHub server’s JSON formatted
response using the NSJSONSerialization class. The Objective-C code uses these
NSDictionary values to request additional resources, display available location
names in a table, and to display data about a location in a text string or an
embedded visualization such as a chart.

Using the Android SDK for Android mobile devices, you can select from multiple
HTTP client libraries to make a RESTful URI request, such as the HttpClient from
the Apache HTTPComponents project or Java’s HttpURLConnection class. After
making an HTTP request to a URI endpoint and checking for errors, the response
from the iHub server is assigned to a string for additional processing.

The following REST API operations are used in BIRT Gazetteer:

■ /Login
Used in BIRTLoginViewController.m to return an authId for an authenticated
user.

■ /Files
Used in BIRTBarChartViewController.m and BIRTMasterViewController.m to
retrieve a file id by searching for the file name.

■ /Visuals
Used in BIRTBarChartViewController.m to search for bookmark names in a
BIRT file.

■ /Dataobject
Used in BIRTColumnChartViewController.m and
BIRTMasterViewController.m to extract values from a data set in a selected
data store file.

C h a p t e r 3 , I n t e g r a t i n g R E S T A P I 27

Authenticating with REST API
An authId is an authentication identifier passed back from iHub after successful
authentication and is required for all subsequent REST API requests.

To generate the authId token, use a POST request for the /login resource with a
username query parameter. Other parameters for /login are optional. An HTTP
request does not encrypt the password field, so always use an HTTPS request for
/login. For instructions to enable HTTPS support for REST API see Integrating
Applications into BIRT iHub.

When successful, the REST API request returns an authentication identifier,
authId. A REST API authentication identifier remains valid for 24 hours by
default.

This example uses Objective-C code to make an authentication request from the
iHub server. After collecting the username and password from the application's
user interface, these values are stored in an NSData object, with the following
code:

-(void) login {
 NSString *yourName = self.username.text;
 NSString *password = self.password.text;

 NSString *post =[NSString stringWithFormat:
 @"username=%@&password=%@",yourName,password];

 NSData *postData =
 [post dataUsingEncoding:NSASCIIStringEncoding
 allowLossyConversion:YES];
 NSString *postLength = [NSString stringWithFormat:@"%lu",
 (unsigned long)[postData length]];

Then the URI to authenticate a user with the REST API is built. An
NSMutableURLRequest uses the URI and attaches the authentication values as
the body of the HTTP POST request, with the following code:

NSMutableURLRequest *request = [NSMutableURLRequest
requestWithURL:[NSURL URLWithString:[NSString

 stringWithFormat:@"%@%@",
 REST_API_URL,
 @"login"]]];
 [request setHTTPMethod:@"POST"];
 [request setHTTPBody:postData];
 NSError *error;
 NSURLResponse *response;
 NSData *urlData=[NSURLConnection

sendSynchronousRequest:request returningResponse:&response
error:&error];

28 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

After checking for errors, the JSON formatted response from the iHub server is
then converted into a Foundation object using the NSJSONSerialization class.
This Foundation object is converted into an NSDictionary for use in other REST
API requests, as shown in the following code:

NSDictionary *loginResponse = [NSJSONSerialization
JSONObjectWithData:urlData options:NSJSONReadingMutableLeaves
error:nil];

 _authId = [loginResponse objectForKey:@"AuthId"];

See the source code for the complete example.

The source code to send RESTful requests using the Android SDK depends on the
HTTP library that you are using. For example, if you are using Java’s
HttpURLConnection class, your RESTful request to the login endpoint can be
similar to the following code:

JSONObject authIDResponse = WebServiceUtil.requestWebService(
 "http://ihubserver:5000/ihub/v1/login");

public static JSONObject requestWebService(String targetURL) {
 disableConnectionReuseIfNecessary();

 URL restURL = new URL(targetURL);

 String formValues =
 "user=" + URLEncoder.encode("demo", "UTF-8") +
 "&password=" + URLEncoder.encode("demo", "UTF-8");

 HttpURLConnection restConnection = (HttpURLConnection)
restURL.openConnection();

 restConnection.setRequestMethod("POST");
 restConnection.setRequestProperty("Accept", "application/

json");
restConnection.setFixedLengthStreamingMode(formValues.getBytes(

).length);
 restConnection.setRequestProperty("Content-Type",

"application/x-www-form-urlencoded");

 restConnection.setConnectTimeout(15000);
 restConnection.setReadTimeout(10000);
 restConnection.setDoOutput(true);

 //PrintWriter formStream = new
PrintWriter(restConnection.getOutputStream());

 //formStream.print(formValues);
 //formStream.close();

 DataOutputStream formStream = new DataOutputStream (
 restConnection.getOutputStream ());
 formStream.writeBytes (formValues);
 formStream.flush ();

C h a p t e r 3 , I n t e g r a t i n g R E S T A P I 29

 formStream.close ();

 if (restConnection.getResponseCode() != 200) {
 throw new RuntimeException("Connection Error code : " +

restConnection.getResponseCode());
 }

 InputStream restResponse = new BufferedInputStream(
 restConnection.getInputStream());

 responseText =
EntityUtils.toString(httpresponse.getEntity());

 return new JSONObject(getResponseText(restResponse));

 restConnection.disconnect();
}
private static String getResponseText(InputStream inStream) {

 // http://weblogs.java.net/blog/pat/archive/2004/10/
stupid_scanner_1.html

 return new Scanner(inStream).useDelimiter("\\A").next();
}

Displaying a list with REST API
This example builds a navigation list of locations, BIRT Gazetteer requests values
from a data set from the world.data file. The following is a general overview of
that process:

■ Search for the world.data file by building a URI using the REST API.

■ Append the authentication identifier to the end of the URI and send it to an
iHub server.

■ Extract the file id from the file search request.

■ Use the file id to make a second REST API request that retrieves a specific data
set from the world.data file.

■ Parse the JSON response from the iHub server into a collection of name and
value pairs, such as an iOS NSDictionary object or an Java JSONObject for
Android.

■ Retrieve from the collection of name and value pairs the names of continents,
regions, and countries.

■ Build the list view navigation of the application using these names.

An example of this process using Objective-C is shown in the following selected
source code from BIRTMasterViewController.m:

30 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

NSString *fileId;
@try {

 NSString *fileName = [NSString
stringWithFormat:@"%@%@",DATA_OBJECT_FOLDER, @"world.Data"];

 NSString *getUrl =[NSString stringWithFormat:[NSString
stringWithFormat:@"%@%@",REST_API_URL,
@"files?search=%@&authId=%@"],

[fileName stringByAddingPercentEscapesUsingEncoding
:NSUTF8StringEncoding], self.authId];

 NSURLRequest *urlRequest = [NSURLRequest
requestWithURL:[NSURL URLWithString:getUrl]];

 NSError *urlConnectionError;
 NSURLResponse *urlResponse;
 NSData *data = [NSURLConnection

sendSynchronousRequest:urlRequest
returningResponse:&urlResponse error:&urlConnectionError];

 NSError *error;
 NSDictionary* response = [NSJSONSerialization

JSONObjectWithData:data options:NSJSONReadingMutableLeaves
error:&error];

 NSArray * responseArr = response[@"ItemList"][@"File"];
 if (responseArr == nil || [responseArr count] == 0) {

 [self showAlert:@"Unable to get the file"];
 } else {

 self.regionData = response[@"data"];
 self.arrayOriginal=responseArr;
}...

The region data is then used to make a hierarchical list that is used to populate the
UITableView in the MasterView.

See the source code for the complete example.

Displaying data visualizations with REST API
This example collects data for display in third-party visualization code using an
chart data object of strings, arrays, and dictionaries. When a user makes a
selection from a list of locations, the chart data object and user interface update
with data about the selected location.

The following overview describes this functionality in the iOS example
application:

C h a p t e r 3 , I n t e g r a t i n g R E S T A P I 31

■ An object of strings, arrays, and dictionaries is defined in BIRTChartData.h.
This object contains values associated with the user selection.

■ User makes a selection from the list of locations and triggers an update to the
chart data object. The user selection calls updateView.

■ The updateView function creates a new BIRTChartData object and loads it
with data about the selected location.

■ The BIRTChartData object is passed to each of the chart view controllers for
display, as shown in the following code:

The following Objective-C code shows the BIRTChartData object used in a chart:

-(void) updateView {
 _titleLabel.text = self.userData[@"name"];

 BIRTChartData *chartData = [[BIRTChartData alloc] init];
 [chartData setWorldData:self.worldData];
 [chartData setSelectedYear:@"2000"];
 [chartData setUserName:self.userName];
 [chartData setPassword:self.password];
 [chartData setDataObjectId:_dataObjectId];
 [chartData setContAbb:self.userData[@"Cont_Abb"]];
 [chartData setRegAbb:self.userData[@"Reg_Abb"]];
 [chartData setCountAbb:self.userData[@"Count_Abb"]];
 [chartData setAuthId:self.authId];
 [chartData setUserData:self.userData];
 [chartData setContAbbs:self.contAbbs];
 for (UIViewController *child in self.childViewControllers) {

 if ([child isKindOfClass:[BIRTColumnChartViewController
class]]) {
 BIRTColumnChartViewController *chart =

(BIRTColumnChartViewController *)child;
 [chart setChartData:chartData];
 [chart setRefreshView:TRUE];
 [chart viewWillAppear:YES];

 }

 if ([child isKindOfClass:[BIRTBarChartViewController
class]]) {
 BIRTBarChartViewController *chart =

(BIRTBarChartViewController *)child;
 [chart setChartData:chartData];
 [chart setRefreshView:TRUE];
 [chart viewWillAppear:YES];

 }
 if ([child isKindOfClass:[BIRTPieChartViewController

class]]) {

32 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

 BIRTPieChartViewController *chart =
(BIRTPieChartViewController *)child;

 [chart deleteValues];
 [chart setChartData:chartData];
 [chart setRefreshView:TRUE];
 [chart viewDidAppear:YES];

 }
 }

}

See the source code for the complete example.

C h a p t e r 4 , I n t e g r a t i n g J a v a S c r i p t A P I 35

C h a p t e r

4
Chapter 4Integrating JavaScript API

This chapter contains the following topics:

■ Reviewing JSAPI integration

■ Updating JavaScript in a web view

■ Displaying BIRT designs in a web view

36 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Reviewing JSAPI integration
This application uses JSAPI to display BIRT visualizations in embedded web
views. A web view can render CSS, HTML, and JavaScript in the native code of
the mobile application. JSAPI communicates with the iHub server using the
authentication ID from the REST API login request. Native code injects values
into JSAPI requests before they are sent. The JSAPI then downloads and displays
interactive BIRT content about the selected location using a bookmarked chart
and a full page report. Bookmarks are a method to identify content in a BIRT
report.

This example uses the following Objective-C methods to communicate with the
HTML content in a UIWebView:

■ Replace string values in the embedded HTML file before loading the HTML
file into the web view. This replacement uses the NSString’s
stringByReplacingOccurrencesOfString function to find string values in the
jsapi.html file and replace those values with the current values, such as the
server URL, and the username and password.

■ Call the init JavaScript function embedded in the web view and pass the
values required to display the BIRT content. This call uses the UIWebView’s
stringByEvaluatingJavaScriptFromString function to call the JavaScript
function.

The ReportView folder of the Xcode project contains the Objective-C files that
define the UIWebView. The BIRTWebViewController.m file organizes the values
necessary to identify and find a report file, the data to be shown in that file, and
how to load the JSAPI library from the current iHub server. These values are put
into an NSString in the JSON format. The BIRTWebViewController.m file then
loads the jsapi.html file into a UIWebView and sends the JSON values to the init
function in the jsapi.html file.

Communication to the UIWebView occurs in one direction. The Objective-C code
can send parameters and values to the content displayed in a UIWebView. The
content in the UIWebView does not communicate back to Objective-C code in this
application.

For more information about embedding BIRT visualizations in HTML see
Integrating Applications into BIRT iHub.

Updating JavaScript in a web view
Values required to load the Actuate JavaScript API from the server are written to
the embedded file jsapi.html before that HTML file is loaded in a UIWebView.

C h a p t e r 4 , I n t e g r a t i n g J a v a S c r i p t A P I 37

The UIWebView then loads the embedded jsapi.html file, as shown in the
following code:

[self loadHTML:@"jsapi.html"];
...
- (void) loadHTML:(NSString*) pageName
{

NSRange range = [pageName rangeOfString:@"."];
if (range.length > 0)
 {

 NSString *fileExt = [pageName
substringFromIndex:range.location+1];

 NSString *fileName = [pageName
substringToIndex:range.location];

 NSURL *url = [NSURL fileURLWithPath:[[NSBundle mainBundle]
pathForResource:fileName ofType:fileExt inDirectory:@""]];

 if (url != nil)
 {

 NSError *error;
 NSString *pageContent = [NSString

stringWithContentsOfURL:url

encoding:NSASCIIStringEncoding
 error:&error];
 NSString *finalContent = [pageContent

stringByReplacingOccurrencesOfString:@"jsapiUrl"
withString:[NSString stringWithFormat:@"%@%@",
IHUB_SERVER_URL, @"iportal/jsapi"]];

 FinalContent = [finalContent
stringByReplacingOccurrencesOfString:@"{uName}"
withString:[NSString stringWithFormat:@"%s%@%s", "'",
self.chartData.userName, "'"]];

 if (self.chartData.password == nil) {
 finalContent = [finalContent

stringByReplacingOccurrencesOfString:@"{pwd}"
withString:self.chartData.password];

} else {
 finalContent = [finalContent

stringByReplacingOccurrencesOfString:@"{pwd}"
withString:[NSString stringWithFormat:@"%s%@%s", "'",
self.chartData.password, "'"]];

 }
 [self.webView loadHTMLString:finalContent baseURL:url];
}

 }
}

38 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Next, an NSString is built with the values required to display the BIRT content,
such as the BIRT report name, the name of the selected location, and the viewing
size of the BIRT content, as shown in the following code:

NSString *file = [NSString stringWithFormat:@"%@%@",REPORT_FOLDER,
fileName];

jsData[@"report"] = file;
if (islandscape) {
 jsData[@"width"] = [NSString stringWithFormat:@"%f", 1024.0];
 jsData[@"height"] =[NSString stringWithFormat:@"%f", 768.0];
} else {
 jsData[@"width"] = [NSString stringWithFormat:@"%f", 768.0];
 jsData[@"height"] =[NSString stringWithFormat:@"%f", 960.0];
}

NSData *jsonData = [NSJSONSerialization dataWithJSONObject:jsData
optionerror:&jsonError];

NSString *jsonStr = [[NSString alloc] initWithData:jsonData
encoding:NSUTF8StringEncoding];

See the source code for the complete example.

Displaying BIRT designs in a web view
Displaying the visualizations and layout of a BIRT design in HTML requires
JavaScript and the Actuate JSAPI. Using JSAPI enables you to embed a BIRT
design or BIRT document into an HTML web page. BIRT Gazetteer uses an iOS
UIWebView class to embed a single HTML file, jsapi.html. This HTML file is
included in the /jsapi folder of the Xcode project and contains the Actuate JSAPI
necessary to display a BIRT design or document file. The JavaScript in jsapi.html
enables you to select the BIRT design file to display and to pass parameter and
bookmark values to the report before it is displayed.

Objective-C calls the init() JavaScript function in the HTML file and passes the
prepared string, as shown in the following code:

[webView stringByEvaluatingJavaScriptFromString:[NSString
stringWithFormat:@"%@(%@);",@"init",jsonStr]];

The JavaScript API then assigns all of the required values to download and
display BIRT content and submits the request to the iHub server for display in the
HTML DIV entity with the id name container. The following JavaScript code
summarizes this request:

function initViewer()
 {
 try

C h a p t e r 4 , I n t e g r a t i n g J a v a S c r i p t A P I 39

 {
 var viewer = new actuate.Viewer("container");
 viewer.setReportDesign(report);
 viewer.setWidth(data.width);
 viewer.setHeight(data.height);
 var options = new actuate.viewer.UIOptions();
 options.enableToolBar(false);
 var parameterValues=[];

 if(data.continent != null) {
 var param=new actuate.viewer.impl.ParameterValue();
 param.setName("continent");
 param.setValue(data.continent);
 parameterValues.push(param);
 }
 ...
 if (parameterValues.length > 0) {
 viewer.setParameterValues(parameterValues);
 }
 if (data.bookmark != null) {
 viewer.setReportletBookmark(data.bookmark);
 }
 viewer.setUIOptions(options);
 viewer.submit();
 }
 }
...
</script>
<body onload="">
<div id ="container">
</div>
</body>

See the source code for the complete example.

40 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

C h a p t e r 5 , E x t e n d i n g m o b i l e f u n c t i o n a l i t y 41

C h a p t e r

5
Chapter 5Extending mobile

functionality
This chapter contains the following topics:

■ Optimizing BIRT content for mobile viewing

■ Accessing mobile device features and applications

■ Using external authentication

■ Changing application default values

■ Customizing web view options

■ Additional optimizations

42 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Optimizing BIRT content for mobile viewing
The report designs displayed in BIRT Gazetteer use two files for each report. One
file uses a master page width of 1024 pixels and a height of 768 pixels, used for
devices in the landscape orientation. Another file uses a master page size with a
width of 768 pixels and a height of 1024 pixels. This report is used for devices in
the portrait orientation.

Content in both the landscape and portrait versions of a report are organized to
make the best use of available space on the mobile screen.

You can limit the quantity of data transferred using the REST API by adding data
groups in the SQL statements or using REST API to filter the data. Data sets
downloaded using the REST API are not aggregated.

Accessing mobile device features and applications
Each mobile platform includes features that you can integrate into your
application, such as receiving push notifications, saving a date to a calendar
application, saving data to a cloud server, or encrypting sensitive data.

For more information about adding capabilities to your iOS application, see the
iOS App Distribution Guide, available from the following URL:

https://developer.apple.com/library/

Many applications in mobile devices use URI schemes to enable access from other
applications. The URI scheme can launch an application and send parameter
values to the application. You can use URI schemes in your Objective-C code or in
your BIRT reports when building HTML hyperlinks. For example, an HTML link
to call a phone number can look like the following code:

1-888-422-8828

The same link in Objective-C looks like the following code:

tel:1-888-422-8828

Common URI schemes for web views include:

■ Mail links to enable a hyperlink to send e-mails

■ Phone links to enable a hyperlink to make a phone call

■ SMS links to enable a hyperlink to send SMS messages

■ Map links to enable a hyperlink to open the map application

C h a p t e r 5 , E x t e n d i n g m o b i l e f u n c t i o n a l i t y 43

Using external authentication
The BIRT Gazetteer application uses the iHub server to authenticate users. The
iHub server can use its own authentication database, connect to your LDAP or
Active Directory user data, or use a single sign-on (SSO) service. See Using BIRT
iHub System Console for more information about supported authentication
services.

Changing application default values
Default URLs and folder paths in an iHub server are set in the BIRTConstants.m
file of the Xcode project. You can build the application for use with your own
iHub server by changing the URL values in this file. You can also change the file
path location of BIRT resources used in the application in this file.

The following NSStrings are contained in this file:

■ REST_API_URL, you can change this value using the following URL format:

http://<iHub server name>:5000/ihub/v1/

■ IHUB_SERVER_URL, you can change this value using the following URL
format:

http://<iHub server name>:8700/

■ REPORT_FOLDER, the file path where BIRT reports are located:

/Home/administrator

■ DATA_OBJECT_FOLDER, the file path where BIRT data objects are located:

/Resources/Data Objects

Customizing web view options
When you display interactive BIRT visualizations in a mobile application, you
use a web view class to display Actuate JSAPI. The iOS UIWebView can also
display files such as an Adobe PDF file, a Microsoft Excel file, or hyperlinks to
other web pages, similar to the mobile version of the Safari web browser. The
following examples are just a few of the ways you can customize the UIWebView
using Objective-C to change what this web view can display:

■ Only display selected file types.

■ Only display web content from your network domain.

44 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

■ Allow users to zoom content.

■ Enable paginated web views.

■ Restore web content after relaunching the application.

■ Customize communication to the web view using the
stringByEvaluatingJavaScriptFromString method for iOS Objective-C.

■ Enable callbacks from the web view to your native operating system classes
using your own URL scheme and a UIWebViewDelegate for iOS Objective-C
or the addJavascriptInterface method for the Android WebView.

■ Disable user selection and callouts of web content.

■ Enable printing of the web view content.

Additional optimizations
This example application demonstrates common integration techniques.
Optimize your own code to make use of your software platform features and
your enterprise requirements. For example, depending on the devices you expect
to use and your application specifications, you might:

■ Use SSL connections to secure user authentications and data.

■ Aggregate data in SQL queries.

■ Aggregate data in BIRT report items and identify the data with bookmarks.

■ Use the latest software development kit supported by your devices, for
example:

■ iOS7 introduces the new NSURLSession to replace NSURLConnection.

■ iOS8 introduces the new WKWebView class to replace UIWebView.

■ Android supports third-party HTTP clients such as OkHttp, Retrofit, and
Volley.

■ Store common resources, such as image files and JavaScript libraries, in your
application.

■ Store data and content offline in sqllite databases using iOS Core Data,
iOS CloudKit, Android Google Cloud, or another storage service.

C h a p t e r 6 , U s i n g d e v e l o p e r r e s o u r c e s 47

C h a p t e r

6
Chapter 6Using developer

resources
This chapter contains the following topics:

■ Using Actuate documentation

■ Visiting the Actuate developer site

■ About additional REST API resources

48 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Using Actuate documentation
Interactive documentation for Actuate REST API operations is also installed with
an iHub server. This documentation is accessible using a web browser at the
following URL:

http://<iHub server>:5000/ihub/v1/ihubrestdocs/

Figure 6-1 shows the documentation included with an installation of iHub.

Figure 6-1 Reviewing the Actuate REST API documentation

C h a p t e r 6 , U s i n g d e v e l o p e r r e s o u r c e s 49

This documentation enables you to test the different URIs available in the Actuate
REST API. To test a REST API operation, select one of the available operations,
type parameter values, and then choose Try it out. Figure 6-2 shows the options to
test the /login URI.

Figure 6-2 Testing the login operation

After sending your test values to the selected operation, the documentation
displays the response from iHub. Figure 6-3 shows the results when the username
Administrator was sent to the /login URI.

50 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

Figure 6-3 Reviewing results from the REST API

Visiting the Actuate developer site
Additional information about integrating BIRT technology into applications is
available at the following URL:

http://developer.actuate.com/deployment-center
/integrating-birt-into-applications/

Forums for discussing BIRT technologies are available at the following URL:

http://developer.actuate.com/community/forum/

C h a p t e r 6 , U s i n g d e v e l o p e r r e s o u r c e s 51

For more information about using the REST API and other Actuate APIs, see
Integrating Applications into BIRT iHub, and the Actuate developer web site at the
following URL:

http://developer.actuate.com/

About additional REST API resources
There are many resources available on the internet discussing the use of RESTful
web services. The following URLs are samples of some of those web sites:

http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

https://www.ibm.com/developerworks/webservices/library/ws-restful/

52 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

I n d e x 53

Index
A
access rights

See also privileges
accessing

Information Console functionality 20
ACL files

See also access control lists
ACLs. See access control lists
ACS. See Caching service
adding

display names. See display names
Administrate operations

See also administration operations
administrators

See also administration operations
aggregate data. See aggregation
aggregate functions. See aggregation

functions
aging rules. See archiving rules
AIS. See Integration service
application programming interfaces (APIs)

See also Information Delivery API
applications

building user interfaces for. See user
interfaces

developing IDAPI. See IDAPI applications
developing RSSE. See RSSE applications
developing web. See web applications

archive files
See also jar files; war files

archive rules. See archiving rules
ArchiveRule objects

See also archiving rules
arguments. See command line arguments;

parameters
attributes

See also properties
autoarchiving. See archiving operations
Axis servers. See Apache Axis environments

B
beans. See JavaBeans

BIRT design files
See also design files

BIRT iHub. See iHub System
BIRT Interactive Crosstabs. See Interactive

Crosstabs
BIRT report files

See also report files
BIRT reports

See also reports
BIRT Viewer

See also report viewer
browsers. See web browsers
Business Intelligence and Reporting Tools.

See BIRT

C
cache database. See Caching service database
calculated columns

See also computed columns
character data. See strings
character encoding. See encoding
character encryption. See encryption
character strings. See strings
chart objects

See also charts
chart wizard launcher

See also chart builder
charts

See also Flash charts; HTML5 charts
developing. See charting APIs

client applications. See applications
column headers

See also column names
column headings

See also column names
comma-separated values files. See CSV files
completion notices

See also notifications
computed columns

See also calculated columns
conditions. See filter conditions; search

conditions

54 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

connection definition files. See database
connection definition files

connection handles. See ConnectionHandle
element

connections
setting properties for. See connection

properties
consolidator application. See log consolidator

application
creating

display names. See display names
IDAPI applications. See applications

CSS files
See also cascading style sheets

D
data

aggregating. See aggregation
extracting. See data extraction operations
localizing. See locales

data analyzer component
See also Interactive Crosstabs

data charts viewer
See also charts

data cubes. See cubes
data elements

See also data items
data fields

See also columns
data filters. See filters
data items

See also data
data repositories

See also Encyclopedia volumes
data rows. See rows
data set fields. See fields
data sorters. See sorters
database connection properties. See

connection properties
database drivers. See drivers
database schemas. See schemas
databases

See also data sources
DCD. See database connection definitions
dependent files. See file dependencies
developing

charts. See charting APIs
IDAPI applications. See IDAPI applications
RSSE applications. See RSSE applications

diagnostic information
See also Ping operations

directory paths. See paths
display formats. See formats
distributed iHub System. See clusters
documentation

See also help collections
documents

See also reports
.dov files. See data object values files
download operations

See also downloading
downloading

See also download operations
duplicating. See copying

E
elements. See report elements; XML elements
e-mail

sending attachments with. See attachments
setting notification options for. See

notifications
events

handling. See event handlers
execution requests. See ExecuteReport

operations
Extensible Markup Language. See XML

F
fields

See also columns
file attributes

See also file properties
file IDs

See also FileId element
file paths. See paths
files

See also report files
naming. See file names
setting properties for. See file properties

finding data. See search operations
folder paths. See paths
formats

I n d e x 55

See also output formats
functions

See also callback functions; methods

G
graphical user interfaces. See user interfaces
graphics elements

See also images
graphs. See charts
groups

See also notification groups; resource
groups

GUI components
See also user interfaces

H
header elements (SOAP messages)

See also SOAP headers
hyperlinks

See also URLs
hypertext markup language. See HTML code
HyperText Transfer Protocol. See HTTP

I
IDAPI applications

See also Information Delivery API
iHub

sending requests over 20
iHub clusters. See clusters
iHub repository. See Encyclopedia volumes
iHub services

See also specific iHub service
Information Console

accessing functionality 20
Information Console Security Extension

See also IPSE applications
Information Delivery API

See also IDAPI applications
input file IDs. See InputFileId element
input file names. See InputFileName element
input messages

See also requests
Integration Technology. See iHub Integration

Technology
Interactive Crosstabs

adding toolbars. See Interactive Crosstabs
toolbars

interfaces
See also user interfaces

iPortalSecurityAdapter class
See also IPSE applications

iServer System. See iHub System

J
Java RSSE framework

See also RSSE applications
jobs

failing. See failed jobs
pending. See pending jobs
print operations and. See print jobs
sending notifications for. See notifications

L
Lightweight Directory Access Protocol. See

LDAP servers
links (Information Console)

See also hyperlinks
Linux servers

See also UNIX systems
log files

tracking error information and. See error
log files

tracking usage information and. See usage
log files

Login operations
See also SystemLogin operations

M
mail. See e-mail
MDS. See Message Distribution service
messages. See e-mail
metadata schemas. See schemas
methods

See also functions
Microsoft NET environments. See .NET

environments
Microsoft Windows. See Windows systems
monitoring tools

See also performance monitoring
multilingual reports. See locales

56 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

N
names

See also user names
naming restrictions. See case sensitivity
nodes. See cluster nodes
non-native reports. See third-party reports
notifications

sending attachments with. See attachments

O
object IDs

See also ObjectId element
on-demand report generation. See

synchronous jobs
online analytical processing servers. See

OLAP servers
online help

See also help
operations

administration. See Administrate
operations

archiving files and. See archiving
operations

login. See Login operations
searching. See search operations
updating files and. See update operations

output
formatting. See output formats

output messages
See also responses

P
page-level security

See also page security application
parameter files

See also data object values files; report
object value files

parameter values files. See data object values
files; report object value files

parameters
See also report parameters
defining dynamic filters. See dynamic filter

parameters
permissions. See privileges
pick lists. See selection lists

plug-in extensions. See extensions
PMD. See Process Management Daemon
PPT formats. See PowerPoint formats
preferences (users). See user preferences
print jobs

See also printing
print requests. See print jobs
printer settings. See printer options
printing requests. See print jobs
purging. See deleting

R
RCP Report Designer package

See also BIRT RCP Report Designer
records

See also rows
removing. See deleting
report components. See components
report design engine classes

See also Design Engine API
report documents

See also reports
Report Encyclopedia. See Encyclopedia

volumes
report execution requests. See ExecuteReport

operations
report explorer. See ReportExplorer

components
report files

See also files; specific report file type
naming. See file names

report objects. See reports
report parameter files

See also data object values files; report
object value files

report parameters
See also parameters
restricting values for. See cascading

parameters
Report Server Security Extension

See also RSSE applications; RSSE API
report servers. See iHub servers
reporting system. See iHub System
reports

sending as attachments. See attachments
repositories

I n d e x 57

See also Encyclopedia volumes
requests

See also SOAP messages
sending 20

responses
See also SOAP messages

result sets
See also queries; search results

.rov files. See report object value files
RPCs. See remote procedure calls
rptdesign format

See also report design files
rptdocument format

See also report document files
RSSE applications

See also Report Server Security Extension
registering external users for. See external

user registration
rules. See archiving rules
run requests. See report generation requests

S
scheduled jobs

See also jobs
schemas

See also WSDL schemas
search criteria. See search conditions
search operations

See also searching
setting conditions for. See search

conditions
searching

See also search operations
security credentials. See credentials
security roles. See roles
sending requests 20
servers

See also iHub servers
services

See also iHub services; web services
settings. See properties
Simple Object Access Protocol. See SOAP
SOAP endpoints

See also SOAP ports
SOAP requests. See requests
SOAP responses. See responses

Software Development Kit
See also SDK package

sort fields. See sort columns
spreadsheets. See Excel spreadsheets
SQL statements. See queries
subdirectories. See subfolders
system administrators

See also administrators
system schemas. See schemas

T
tab-separated values files. See TSV files
tcpmon utility. See TCPMonitor
temporary files. See transient files
temporary reports. See transient reports
text strings. See strings
transactions

See also Transaction operations
types. See data types

U
UI elements

See also user interfaces
Uniform Resource Locators. See URLs
universal hyperlinks. See hyperlinks
Universal Resource Identifiers. See URIs
URIs

submitting requests and 20
user groups. See groups
user IDs

See also UserId element

V
values

See also data
version names

See also VersionName element
view parameters

See also ViewParameter element
viewing parameters. See view parameters
viewing preferences. See viewer preferences
viewing service. See View service
Vista computers. See Windows systems
volume administrators. See administrators
volume schemas. See schemas
volumes. See Encyclopedia volumes

58 B u i l d i n g M o b i l e A p p l i c a t i o n s U s i n g B I R T A P I s

W
web applications

See also applications
web service applications

See also IDAPI applications
Web Service Description Language. See

WSDL
web services messaging framework. See

SOAP
WSDL documents

See also WSDL files
WSDL elements

See also XML elements
WSDL2Java package

See also code emitter

X
XML attributes. See attributes
XML code

See also code
XML reports. See XML documents
XML schemas

See also WSDL schemas
XP computers. See Windows systems

	About Building Mobile Applications Using BIRT APIs
	Introducing BIRT APIs for applications
	Using BIRT REST API and JavaScript API in applications
	Introducing the BIRT Gazetteer example application
	Accessing source code and resources
	About Xcode project files
	About resources used by the example application

	Understanding BIRT and mobile tools
	Overview of BIRT iHub Visualization Platform
	Considering which Actuate API to use
	About the representational state transfer API
	About the JavaScript API

	Using BIRT Designer Professional for mobile results
	Introducing GitHub

	Integrating REST API
	Reviewing REST API integration
	Authenticating with REST API
	Displaying a list with REST API
	Displaying data visualizations with REST API

	Integrating JavaScript API
	Reviewing JSAPI integration
	Updating JavaScript in a web view
	Displaying BIRT designs in a web view

	Extending mobile functionality
	Optimizing BIRT content for mobile viewing
	Accessing mobile device features and applications
	Using external authentication
	Changing application default values
	Customizing web view options
	Additional optimizations

	Using developer resources
	Using Actuate documentation
	Visiting the Actuate developer site
	About additional REST API resources

	Index

