Event Service Example

Overview

Actuate iHub supports report scheduling based on an event in addition to the traditional calendar date/time based schedule. Actuate iHub supports the following types of events:

· File event -- A file exists on  the OS file system

· Job event -- An Encyclopedia volume job executes

· Custom event -- Actuate iHub waits for a signal from an external web service 

You can use the first two event types, the file event and job event, without any custom programming. To use a custom event with a job, you need to create a web service and configure Actuate iHub to communicate with the web service. 

To demonstrate how to implement and deploy a web service as an Actuate iHub event service, the Actuate iHub installation program installs a sample web service and configures the default Encyclopedia volume to use the web service as an Actuate iHub custom event service. The source code for the example web service ships with Server Integration Technology in the folder Custom Event Web Service.

Implementing the event service

By implementing the EventService interface, you can create and run a custom event service based on your requirements that determine when an event has occurred or is expired. 

The sample implementation of the EventService interface is encapsulated in the package com.actuate<version>.event.sample inside eventSample.jar. The sample implementation returns either the satisfied or expired event status for any GetEventStatus request it receives. The implementation alternates between the satisfied or expired event statuses when it receives a GetEventStatus request. The implementation returns a satisfied when it receives the first GetEventStatus request, and returns expired when it receives the second request, and so on.

To implement your own event service, you can modify the sample implementation or implement the EventService in a class you create. If you create a class, implement the GetEventStatus method of that interface based on your requirements. 

The WSDL used for this web application example implementation can be accessed on Actuate iHub using following URL :

http://<hostname>:8010/wsdl/provisioning/v11/event/axis.

Building the event service

Actuate iHub Integration Technology supplies an Apache ANT build script named build.xml. Building the default target “build” using ANT creates eventSample.jar under $ServerIntTech2/Custom Event Web Service/lib. Building the target with the “clean” option cleans up generated class and jar files.

For information about Apache ANT see the Apache ANT web site http://ant.apache.org.

Installing the event service

Installing the event service consists of the following steps:

· Creating the jar file containing the service

· Deploying the service on an application server

· Configuring Actuate iHub Encyclopedia volume to use the service

Create a jar file containing the service

Create a jar file containing your implementation. The build file, build.xml, that ships with the sample implementation creates eventSample.jar.

Deploying the service on an application server

Stop the application server that runs the event service, add the jar file to the application server, configure the application server, and restart the server.

For the application server that ships with Actuate iHub, the following directory is used as the default context for the Actuate iHub custom event service:


$AC_SERVER_HOME/web/webapps/acevent/WEB-INF/lib

To deploy the event service to the default context, add the jar file to the lib directory. 

Update the event service web.xml file to point to the event service class file. If you deploy the event service using the Actuate iHub default context, you can update the environment entry of the web.xml file to update the event service class name.

The web.xml file can be found in th application server directory webapps/acevent/WEB-INF
Environment entry from web.xml looks like as follows: 


<env-entry>


     <description> Class name for the event service </description>


     <env-entry-name>EventServiceClass</env-entry-name>


     <env-entry-value>com.actuate<version>.event.sample.SampleEventService</env-entry-value>


     <env-entry-type>java.lang.String</env-entry-type>


</env-entry>

So the value for <env-entry-value> can be modified to the customized EventService class name. 

For example, if the name of your class is com.myCompany.myEvent replace existing class name with this line in the file:


<env-entry-value>com.myCompany.myEvent</env-entry-value>

Setting up Actuate iHub
The default Actuate iHub installation enables the custom event. The default custom event service parameters point to the sample event service shipped with Actuate iHub running from the following location:

$AC_SERVER_HOME/web/webapps/acevent.

To change the event service configuration edit the $AC_SERVER_HOME/shared/config/acserverconfig.xml file:

<System


...

EnableCustomEventService="True"


CustomEventServiceIPAddress="localhost"


CustomEventServiceContextString="/acevent/servlet/AxisServlet"


CustomEventServiceConnectionTimeout="300"

EventLagTime="60"


EventPollingDuration="300"


EventPollingInterval="5"


CustomEventServicePort="8700"


...

>
Where

EnableCustomEventService - With true or false, to enable or disable this feature.

CustomEventServiceIPAddress - The machine IP address hosting the event service
CustomEventServicePort - The port of the application server hosting the event service

CustomEventServiceContextString - The context path of the event service web application
CustomEventServiceConnectionTimeout - Timeout for the event service
EventLagTime - The grace period time when a response is considered successful.
EventPollingDuration - Timeout duration for getting a single response from the event service
EventPollingInterval - How often to iHub will poll the event service
Notes for Using ArrayOfXXXX classes:

To set array values for classes like ArrayOfEventStatus, the array has to be built up first before setting it. For example, to set the ArrayOfEventStatus the following code can be used:


ArrayOfEventStatus outputList = new ArrayOfEventStatus();

        EventStatus[] eventStatusList = new EventStatus[inputList.length];

        for (int i = 0; i < inputList.length; i++)

        {

            Event event = inputList[i];

            EventStatus eventStatus = new EventStatus();

            eventStatus.setEventNumber( event.getEventNumber() );

            eventStatus.setStatusCode( getEventState( event ) );

            eventStatusList[i] = eventStatus;

        }

        outputList.setEventStatus( eventStatusList );

Note that the setEventStatus() takes in a EventStatus[] that has been allocated by the caller. 

Alternately for setting specific EventStatus elements to the ArrayOfEventStatus, the ArrayOfEventStatus will have to be allocated with space for expected number of elements before setting individual EventStatus elements.

